

SG1

Strain Gauge

Function Module

MODULE MANUAL

REVISION HISTORY	4
SG1 DATA SHEET	5
INTRODUCTION	7
FEATURES	7
PRINCIPLE OF OPERATION	7
Automatic Background Built-in Test (BIT)/Diagnostic Capability	7
Status and Interrupts	7
REGISTER DESCRIPTIONS	8
SG1 Measurement Registers	8
Vout/Vexc	8
Strain	8
Minimum Strain	8
Maximum Strain	8
SG1 Control Registers	9
Bridge Configuration Type	9
PGA	10
Sample Rate	11
Nominal Strain Gauge Resistance	11
Gauge Factor	11
Poisson Ratio	12
Lead Resistance	12
Excitation Voltage	12
Wire Select Mode	12
Reset Minimum and Maximum Strain	13
Use Internal Bridge Completion	13
Strain Alert Detect Programming	14
Strain Alert Detect 1	14
Strain Alert Detect 2	14
Status and Interrupt Registers	15
BIT Loop Status	15
BIT Amp Status	15
BIT Status	16
Strain Alert Status	16
Error Summary Status	17
Interrupt Vector and Steering	18
FUNCTIONAL REGISTER MAP	19
SG1 Measurement Registers	19
SG1 Control Registers	19
Strain Alert Detect Programming Registers	20
Status Registers	21
BIT Registers	21
Status Registers	21
Interrupt Registers	22
APPENDIX: PIN-OUT DETAILS	24
MODULE MANUAL - STATUS AND INTERRUPTS	25
STATUS AND INTERRUPTS	26
Interrupt Vector and Steering	26
Interrupt Trigger Types	27
Dynamic and Latched Status Registers Examples	28
Interrupt Examples	29

NAI Cares	31
FAQ	31
Application Notes	31
Calibration and Repairs	31
Call Us	31

Revision History

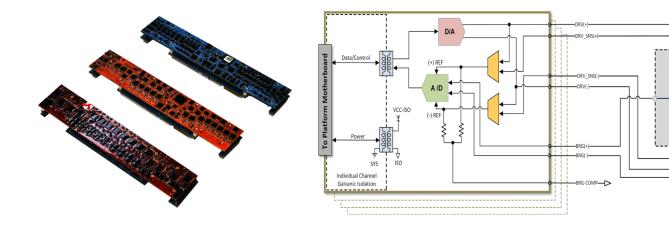
Module Ma	Module Manual - SG1 Revision History											
Revision	Revision Date	Description										
с	2022-10- 11	EC0 C09714, transition to docbuilder format. Pg.5 thru 7, changed "Delta-Sigma" to "Sigma-Delta". Pg.6, remove FIR filter mode reference from Output Data Rate. Pg.7, added Status and Interrupts paragraph. Pg.13, changed Reset Min & Max Strain from R/W to W. Added Appendix: Pin-Out Details.										

Module Man	Module Manual - Status and Interrupts Revision History										
Revision	Revision Date	Description									
С	2021-11-30										

SG1 Measurement & Simulation Modules Strain Gauge Measurement Function Modules

4 Channels, Strain Gauge Measurement

Module SG1 is NAI's latest generation Strain Gauge Measurement Module. This intelligent, four-channel module is used on our Multifunction Embedded I/O Boards and Single Board Computers (SBCs).


While there are several methods of measuring mechanical strain, the most common is with a strain gauge. The gauge provides electrical resistance that varies in proportion to the amount of strain in the device. The most widely used gauge is the bonded metallic strain gauge. To measure such small changes in resistance, strain gauges are almost always used in a bridge configuration with a voltage excitation source. The general Wheatstone bridge (conventional, 4-arm bridge) consists of four resistive arms with an excitation voltage, Vexc, that is applied across the bridge.

The SG1 module uses four independent, isolated input A/Ds. This module is designed to read output signals from a completed Wheatstone bridge (i.e., it can be used with one or more strain gauge elements as a completed 4-arm Wheatstone bridge) and is commonly used in applications requiring pressure, weight, and stress transducers interface/measurement. Each channel incorporates an Σ - Δ modulator, a PGA, and on-chip digital filtering intended for the measurement of wide dynamic range signals. Each channel also contains a fourth order digital filter, with several programmable filter options. When properly applied, the filter has deep notches at either 50 or 60 Hz.

The SG1 module provides a DC excitation, programmable from 2 - 12 VDC for interfacing to most load and accelerometer gauges.

The on-board processor/FPGA resources remove the user from the details of managing the A/D interface, register access, and sample timing. The processor firmware provides the user with a simpler user interface with high-level commands and post-calibration data. The module also contains internal factory calibration values stored in Flash. The SG1 automatically recalibrates for changes in reference voltage and die temperature.

Both internal and system calibration are included, providing the user with the option of removing only offset/gain errors internal to the A/Ds or the offset/gain errors of the complete end system.

Features

- Four independent, isolated input A/Ds
- Designed to read output signals from a completed Wheatstone bridge
 Used in applications requiring pressure, weight, and stress transducers
- interface and measurement
- On-chip digital filtering for wide dynamic range signal measurement
- DC excitation for load and accelerometer gauge interface (programmable from 2-12 VDC)
- Onboard management of:
 - AD interface
 - Register access
 Sample timing
- Internal and system calibration is included

Specifications

North Atlantic

Industries

-	
Number of Channels	4 differential input channels for load cell & accelerometer measurement.
Input Interface	Conventional 4-arm Wheatstone bridge, 4 or 6-wire interface.
A/D Converter	32-bit Sigma-Delta
Output Resolution	32-bit
Accuracy	± 0.1% Full-Scale (FS) range
Digital Output	Percent of Full Scale; Ratio (Vin/Vexc)
Gain Settings	1, 2, 4, 8, 16, and 32 (programmable)
Input Impedance	> 10 ΜΩ
Input Coupling	DC
Bridge Excitation Voltage (Vexc)	Independent Sources, Programmable 2 - 12 VDC
Output Current (Maximum)	100 mA / source
Remote Voltage Sensing	Yes
Output Data Rate	2.5 to 38,400 Hz (dependent on programmable filter settings).
BIT (Built-in-Test)	Continuous background "online" accuracy, open detection capability.
ESD Protection	Designed to meet the testing requirements of IEC 801-2 Level 2. (4 kV transient with a peak current of 7.5 A and a time constant of approximately 60 ns)
Enhanced Functionality (pending)	Each channel provided with: Programmable FFT with selectable sample rate and number of points (up to 64K). User selectable windowing function. Store value of unstrained voltage to include as compensation value
Power	5 VDC @ 850 mA typical (est.)
Ground	Channels isolated from each other and system ground.
Weight	1.5 oz. (42 g)

Architected for Versatility

NAI's Configurable Open Systems Architecture[™] (COSA®) offers a choice of over 100 smart I/O, communications, or Ethernet switch functions, providing the highest packaging density and greatest flexibility of ruggedized embedded product solutions in the industry. Preexisting, fully-tested functions can be combined in an unlimited number of ways quickly and easily.

One-Source Efficiencies

Eliminate man-months of integration with a configured, field-proven system from NAI. Specification to deployment is a seamless experience as all design, state-of-the-art manufacturing, assembly and test are performed - by one trusted source. All facilities are located within the U.S. and optimized for high-mix/low volume production runs and extended lifecycle support.

Product Lifecycle Management

From design to production and beyond, NAI's product lifecycle management strategy ensures the long-term availability of COTS products through configuration management, technology refresh and obsolescence component purchase and storage.

All specifications are subject to change without notice. All product and company names are trademarks or registered trademarks of their respective holders

INTRODUCTION

This module manual provides information about the North Atlantic Industries, Inc. (NAI) Strain Gauge (SG) Measurement Function Module: SG1. This module is compatible with all latest generation NAI motherboards.

The <u>SG1</u> provides four differential input channels for load cell & accelerometer measurement.

FEATURES

- Four independent, isolated input A/Ds
- Designed to read output signals from a completed Wheatstone bridge
- · Used in applications requiring pressure, weight and stress transducers interface/measurement.
- · On-chip digital filtering for wide dynamic range signal measurement
- DC excitation for load and accelerometer gauge interface (programmable from 2-12 VDC)
- Onboard management of A/D interface, register access and sample timing
- · Internal and system calibration included

PRINCIPLE OF OPERATION

The SG1 module is NAI's latest generation Strain Gauge Measurement Module. This intelligent, four-channel module is used on our multifunction embedded boards and SBCs to provide load cell and accelerometer element measurement interfaces.

While there are several methods of measuring mechanical strain, the most common is with a strain gauge. The gauge provides electrical resistance that varies in proportion to the amount of strain in the device. The most widely used gauge is the bonded metallic strain gauge. To measure such small changes in resistance, strain gauges are almost always used in a bridge configuration with a voltage excitation source. The general Wheatstone bridge (conventional, 4-arm bridge) consists of four resistive arms with an excitation voltage, Vexc, that is applied across the bridge.

The SG1 module uses four independent, isolated input A/Ds. This module is designed to read output signals from a completed Wheatstone bridge (i.e., it can be used with one or more strain gauge elements as a completed 4-arm Wheatstone bridge) and is commonly used in applications requiring pressure, weight, and stress transducers interface/measurement. Each channel incorporates a Σ - Δ (Sigma-Delta) modulator, a PGA, and on-chip digital filtering intended for the measurement of wide dynamic range signals. Each channel also contains a fourth order digital filter, with several programmable filter options. When properly applied, the filter has deep notches at either 50 or 60 Hz.

The SG1 module provides a DC excitation, programmable from 2 – 12 VDC for interfacing to most load and accelerometer gauges.

The on-board processor/FPGA resources remove the user from the details of managing the A/D interface, register access, and sample timing. The processor firmware provides the user with a simpler user interface with high-level commands and post-calibration data. The module also contains internal factory calibration values stored in Flash.

Automatic Background Built-in Test (BIT)/Diagnostic Capability

Automatic background BIT testing is provided. Each channel is checked at periodic intervals for correct A/D operation. Any failure triggers an interrupt if enabled, with the results available in the status registers. The testing is transparent to the user and has no effect on the operation of this module.

Status and Interrupts

The SG Strain Gauge Measurement Module provide registers that indicate faults or events. Refer to "Status and Interrupts Module Manual" for the Principle of Operation description.

REGISTER DESCRIPTIONS

The register descriptions provide the Register Name, Type, Data Range, Read or Write information, power on default initialized values, a description of the function and a data table where applicable.

SG1 Measurement Registers

The SG1 measurement registers provide Vout/Vexc ratio measurements, strain measurements, and minimum/maximum strain readings.

Vout/Vexc

Function: Measures the ratio of the bridge output voltage to the excitation voltage.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1.0 to +1.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Vout/Vexc measurement in V/V.

	Vout/Vexc														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

Strain

Function: Measures the level of mechanical strain.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Strain is calculated based on the Vout/Vexc reading, bridge configuration type, nominal strain gauge resistance, gauge factor, Poisson ratio, and lead resistance. Units are in micro-strain (με).

Minimum Strain

Function: Stores the minimum strain level. When a new strain reading is lower than the value in this register, it will replace it.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Reset this value to zero by writing to the min/max reset register.

Maximum Strain

Function: Stores the maximum strain level. When a new strain reading is higher than the value in this register, it will replace it.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Reset this value to zero by writing to the min/max reset register.

SG1 Control Registers

The SG1 control registers provide the ability to configure the channels for the strain gauge interface and application.

Bridge Configuration Type

Function: Selects the bridge and strain gauge configuration.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x6

Read/Write: R/W

Initialized Value: 0x0 (Quarter Bridge 1)

Operational Settings: See below table for compatible configurations.

Configuration Types	Register Value	Configuration Diagram	Strain Formula
Quarter-Bridge I	0x0	$V_{\mathrm{in}} \overset{R_{\mathrm{i}}}{\underbrace{\qquad}} \overset{R_{\mathrm{i}}}{\underbrace{}} \overset{R_{\mathrm{i}}}{\underbrace{}} \overset{R_{\mathrm{i}}}{\underbrace{}} \overset{R_{\mathrm{i}}}{\underbrace{}} \overset{R_{\mathrm{i}}}{\underbrace{\atop}} \overset{R_{\mathrm{i}}}{\underbrace{I}} \overset{R_{\mathrm{i}}}{\underbrace{I}} \overset{R_{\mathrm{i}}}{\underbrace{I}} \overset{R_{\mathrm{i}}}{$	Strain (c) = $\frac{-4V_r}{GF(1+2V_r)} \bullet \begin{bmatrix} 1 + \frac{R_L}{R_G} \end{bmatrix}$
Quarter-Bridge II	0x1	$\mathbf{V}_{u} \begin{pmatrix} \bullet \\ \mathbf{R}_{i}^{T_{i}} & \bullet \\ \mathbf{R}_{i}^{T_{i}} & \mathbf{R}_{i} \\ \\ \mathbf{R}_{i} \\ \mathbf{R}_{i}^{T_{i}} & \mathbf{R}_{i} \\ $	Strain (ε) = $\frac{-4V_r}{GF(1+2V_r)} \bullet \left[1 + \frac{R_L}{R_G} \right]$
Half-Bridge I	0x2	$V_{\mathrm{s}} \overset{P_{i}}{} \overset{P_{i}}{\underset{R_{i}}{\overset{P}}{\overset{P}}{\overset{P_{i}}{\overset{P}}{\overset{P}}{\overset{P}{\overset{P}}}{\overset{P_{i}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}}}}}}}}$	Strain (ε) = $\frac{-4V_{r}}{GF[(1+v)-2V_{r}(v-1)]} \bullet \left[1 + \frac{R_{L}}{R_{G}}\right]$
Half-Bridge II	0x3	R_{i}	Strain (ε) = $\frac{-2V_{f}}{GF} \cdot \left[1 + \frac{R_{L}}{R_{G}} \right]$
Full-Bridge I	0x4		Strain (ε) =V _r
Full-Bridge II	0x5	Va (*) Va (*	Strain (ε) = -2V _r GF (ν+1)
Full-Bridge III	0x6	V_{c} $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Strain (ε) = <u>-2V_r</u> GF [(v + 1) - V _r (v-1)]

PGA

Function: Sets the gain of the A/D.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x5 (See table)

Read/Write: R/W

Initialized Value: 0x2 (4V/V)

Operational Settings: Set the value based on the PGA table

PGA Register Value	Gain (V/V)
0x0	1
0x1	2
0x2	4
0x3	8
0x4	16
0x5	32

	PGA														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	D	D	D

Sample Rate

Function: Sets the sampling rate of the A/D.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF (See table)

Read/Write: R/W

Initialized Value: 0x0 (2.5 SPS)

Operational Settings: Set the value based on Sample Rate table. Note: lower rates provide greater stability and accuracy in the readings. Per channel configuration.

Sample Rate Register Value	Sample Rate (SPS)	Bandwidth (Hz)
0x0	2.5	1.25
0x1	5	2.5
0x2	10	5
0x3	16.6666	8.3333
0x4	20	10
0x5	50	25
0x6	60	30
0x7	100	50
0x8	400	200
0x9	1200	600
0xA	2400	1200
0xB	4800	2400
0xC	7200	3600
0xD	14400	7200
0xE	19200	9600
0xF	38400	19200

	Sample Rate														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	D	D	D	D

Nominal Strain Gauge Resistance

Function: User defined resistance of the strain gauge in an unstrained condition.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 350.0 (programmed in ohms)

Operational Settings: Sets the user defined nominal strain gauge resistance to be used for strain calculation.

Gauge Factor

Function: User defined ratio of the fractional change in resistance to the fractional change in strain.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 2.0

Operational Settings: Sets the user defined gauge factor to be used for strain calculation.

Poisson Ratio

Function: User defined negative ratio of the strain in the transverse direction to the strain in the axial direction.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.3

Operational Settings: Sets the user defined Poisson ratio to be used for strain calculation.

Lead Resistance

Function: User defined resistance of the wires connecting the bridge to the module.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0 (programmed in ohms)

Operational Settings: Sets the user defined lead resistance to be used for strain calculation.

Excitation Voltage

Function: User defined bridge excitation voltage.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xFFF (0.0V to 12V)

Read/Write: R/W

Initialized Value: 0x0 (off)

Operational Settings: Programmable bridge excitation voltage up to 12V. 12-bit value, LSB is calculated by 12V / (2¹²-1) and is approximately 2.93mV.

	Excitation Voltage														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D

Wire Select Mode

Function: Selects where to sense the excitation voltage. A 6-wire connection is required to sense the excitation voltage at the bridge. If the voltage sensing is done internally, only 4 wires are required.

Type: unsigned binary word (32-bit)

Data Range: 0x4, 0x6

Read/Write: R/W

Initialized Value: 0x4 (internal sensing)

Operational Settings: Set the Wire Measurement Mode as specified in the table.

Wire Select Mode Value	Description
0x4	4-wire configuration, internal sensing
0x6	6-wire configuration, remote sensing

	Wire Select Mode														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	D	D	D

Reset Minimum and Maximum Strain

Function: Resets the channel's minimum and maximum strain readings.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF

Read/Write: W

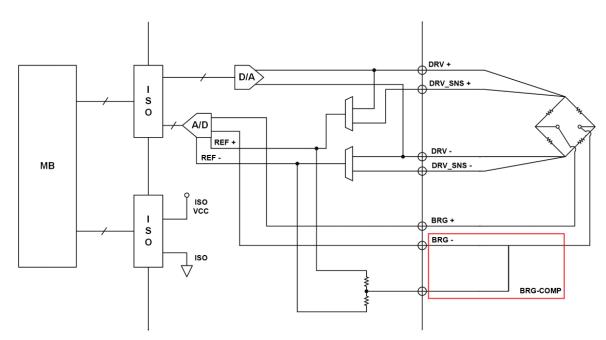
Initialized Value: 0x0

Operational Settings: Writing a '1' resets the channel's minimum and maximum strain readings to 0.0. Bit-mapped by channel.

	Reset Minimum and Maximum Strain														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	D	D	D	D

Use Internal Bridge Completion

Function: Enables the bridge completion circuitry. When enabled, the user needs only to connect a half-bridge, and connect the bridge completion pin to the sense low pin.


Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: If configured with two arms of the Wheatstone bridge external to the module, the user must complete the bridge using the module's internal half-bridge. This is accomplished by wiring the BRG-COMP pin to the BRG - pin (as shown below).

Writing a '1' enables the bridge completion circuit for the channel. Bit-mapped per channel.

	Use Internal Bridge Completion														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	D	D	D	D

Strain Alert Detect Programming

The SG1 Strain Alert registers provide the ability to program four strain thresholds that will result in strain alerts.

Strain Alert Detect 1

A "low" and a "high" threshold value is specified for each strain threshold that will be used to set the Strain Alert statuses. The Low Strain Alert 1 register sets the threshold value to use to set the Low Strain Alert 1 status bit when the Strain reading is less than or equal to the low strain threshold value. Conversely, the High Strain Alert 1 register sets the threshold values to use to set the High Strain Alert 1 status bit when the Strain reading is greater than or equal to the high strain threshold value. These threshold values are individually configurable on a per channel basis.

Low Strain Alert 1

Function: Sets Low Strain Alert 1 value in micro-strain (µɛ) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is less than or equal to the set value, then a *Low Strain Alert 1 Status* will be set. An interrupt will occur if the *Low Strain Alert 1 Interrupt Enable* register is set to **1**.

High Strain Alert 1

Function: Sets High Strain Alert 1 value in micro-strain ($\mu\epsilon$) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is greater than or equal to the set value, then a *High Strain Alert 1 Status* will be set. An interrupt will occur if the *High Strain Alert 1 Interrupt Enable* register is set to **1**.

Strain Alert Detect 2

A "low" and a "high" threshold value is specified for each strain threshold that will be used to set the Strain Alert statuses. The *Low Strain Alert 2* register sets the threshold value to use to set the *Low Strain Alert 2* status bit when the Strain reading is less than or equal to the low strain threshold value. Conversely, the *High Strain Alert 2* register sets the threshold values to use to set the *High Strain Alert 2* status bit when the Strain reading is greater than or equal to the high strain threshold value. These threshold values are individually configurable on a per channel basis.

Low Strain Alert 2

Function: Sets Low Strain Alert 2 value in micro-strain ($\mu\epsilon$) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is less than or equal to the set value, then a *Low Strain Alert 2 Status* will be set. An interrupt will occur if the *Low Strain Alert 2 Interrupt Enable* register is set to **1**.

High Strain Alert 2

Function: Sets High Strain Alert 2 value in micro-strain ($\mu\epsilon$) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is greater than or equal to the set value, then a *High Strain Alert 2 Status* will be set. An interrupt will occur if the *High Strain Alert 2 Interrupt Enable* register is set to **1**.

Status and Interrupt Registers

The SG1 Module provides status registers for BIT, and Strain Alert.

BIT Loop Status

Function: This test represents the dynamic status of the BIT Loop test that checks the A/D interface and A/D operation health

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R

Initialized Value: 0

Operational Settings: The logic OR of this status along with the BIT Amp Status makes up the overall BIT status.

	BIT Loop Status														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

BIT Amp Status

Function: This test represents the dynamic status of the BIT Amp test that checks the front-end circuitry of the channel

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R

Initialized Value: 0

Operational Settings: The logic OR of this status along with the BIT Loop Status makes up the overall BIT status

	BIT Amp Status														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

BIT Status

There are four registers associated with the BIT Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

	BIT Dynamic Status														
	BIT Latched Status														
	BIT Interrupt Enable														
	BIT Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Indicates the corresponding channel BIT status or configuration

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Strain Alert Status

There are four registers associated with each of the Strain Alert Statuses: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

	Strain Alert Low 1 Dynamic Status														
Strain Alert Low 1 Dynamic Status															
					St	train Ale	ert Low	1 Latch	ed Statu	IS					
					St	rain Ale	rt Low 1	l Interru	ipt Enab	le					
					Strain	Alert Lo	ow 1 Set	t Edge/L	evel Int	errupt					
					St	rain Ale	rt High	1 Dynar	nic Stat	us					
Strain Alert High 1 Latched Status															
Strain Alert High 1 Interrupt Enable															
Strain Alert High 1 Set Edge/Level Interrupt															
Strain Alert Low 2 Dynamic Status															
Strain Alert Low 2 Dynamic status															
Strain Alert Low 2 Interrupt Enable															
Strain Alert Low 2 Set Edge/Level Interrupt															
					St	rain Ale	rt High :	2 Dynar	nic Stat	us					
					St	rain Ale	ert High	2 Latch	ed Statı	IS					
					St	rain Ale	rt High 2	2 Interru	upt Enab	ole					
					Strain	Alert Hi	gh 2 Se	t Edge/l	Level Int	terrupt					
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Sets the corresponding bit associated with the channel's Strain Alert indication for strain readings that are below or above the associated thresholds.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Error Summary Status

There are four registers associated with the Summary Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

	Summary Status Dynamic Status														
	Summary Status Latched Status														
	Summary Status Interrupt Enable														
	Summary Status Set Edge/Level Interrupt														
D31															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Sets the corresponding bit when a fault is detected for BIT on that channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Summary Events Table

Module	BIT	Overcurrent	External Power Loss	 External Power Under Volt	External Power Over Volt	Over Temp	Surge Suppressor Fault
SG1	Х						

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism.

In addition to specifying the interrupt vector, the interrupt can be directed ("steered") to the native bus or to the application running on the onboard ARM processor.

<u>Note</u>, the Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector Function: Set an identifier for the interrupt. Type: unsigned binary word (32-bit) Data Range: 0 to 0xFFFF FFFF Read/Write: R/W Initialized Value: 0 Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See Table

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME	1
Direct Interrupt to ARM Processor (via SerDes)	2
(Custom App on ARM or NAI Ethernet Listener App)	
Direct Interrupt to PCIe Bus	5
Direct Interrupt to cPCI Bus	6

FUNCTIONAL REGISTER MAP

Key: Bold Italic = Configuration/Control

Bold Underline = Measurement/Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a '1' to a bit set to '1' will set the bit to '0').

~ Data is always in Floating Point.

SG1 Measurement Registers

0x2034	Vout/Vexe Ch 1~	R	0
0x2134	Vout/Vexe Ch 2~	R	0
0x2234	Vout/Vexe Ch 3~	R	0
0x2334	Vout/Vexe Ch 4~	R	0

0x2038	<u>Strain (με) Ch 1~</u>	R
0x2138	<u>Strain (με) Ch 2~</u>	R
0x2238	<u>Strain (με) Ch 3~</u>	R
0x2338	<u>Strain (με) Ch 4~</u>	R

R

R

R

R

0x203C	<u>Minimum Strain (με) Ch 1~</u>	R	0x2040	<u>Maximum Strain (με) Ch 1~</u>
0x213C	<u>Minimum Strain (με) Ch 2~</u>	R	0x2140	<u>Maximum Strain (με) Ch 2~</u>
0x223C	<u>Minimum Strain (με) Ch 3~</u>	R	0x2240	<u>Maximum Strain (με) Ch 3~</u>
0x233C	Minimum Strain (με) Ch 4~	R	0x2340	Maximum Strain (µɛ) Ch 4~

SG1 Control Registers

0x2000	Bridge Configuration Type Ch 1	R/W
0x2100	Bridge Configuration Type Ch 2	R/W
0x2200	Bridge Configuration Type Ch 3	R/W
0x2300	Bridge Configuration Type Ch 4	R/W

0x2044	PGA Ch 1	R/W
0x2144	PGA Ch 2	R/W
0x2244	PGA Ch 3	R/W
0x2344	PGA Ch 4	R/W

0x201C	Sample Rate Ch 1	R/W
0x211C	Sample Rate Ch 2	R/W
0x221C	Sample Rate Ch 3	R/W
0x231C	Sample Rate Ch 4	R/W

0x2004	Nominal Strain Gauge	R/W
	Resistance Ch 1	
0x2104	Nominal Strain Gauge	R/W
	Resistance Ch 2	
0x2204	Nominal Strain Gauge	R/W
	Resistance Ch 3	
0x2304	Nominal Strain Gauge	R/W
	Resistance Ch 4	

0x2008	Gauge Factor Ch 1	R/W
0x2108	Gauge Factor Ch 2	R/W
0x2208	Gauge Factor Ch 3	R/W
0x2308	Gauge Factor Ch 4	R/W

0x200C	Poisson Ratio Ch 1	R/W
0x210C	Poisson Ratio Ch 2	R/W
0x220C	Poisson Ratio Ch 3	R/W
0x230C	Poisson Ratio Ch 4	R/W

0x2010	Lead Resistance Type Ch 1	R/W
0x2110	Lead Resistance Type Ch 2	R/W
0x2210	Lead Resistance Type Ch 3	R/W
0x2310	Lead Resistance Type Ch 4	R/W

0x2014	Excitation Voltage Ch 1	R/W
0x2114	Excitation Voltage Ch 2	R/W
0x2214	Excitation Voltage Ch 3	R/W
0x2314	Excitation Voltage Ch 4	R/W

0x2018	4-Wire/6-Wire Select Ch 1	R/W
0x2118	4-Wire/6-Wire Select Ch 2	R/W
0x2218	4-Wire/6-Wire Select Ch 3	R/W
0x2318	4-Wire/6-Wire Select Ch 4	R/W

0x1000 Reset Minimum and Maximum Strain Ch 1-4	R/W
---	-----

0x1004	Use Internal Bridge Completion Ch 1-4	R/W
--------	--	-----

Strain Alert Detect Programming Registers

0x2028	Low Strain Alert 1 Ch 1~	R	0x2020
0x2128	Low Strain Alert 1 Ch 2~	R	0x2120
0x2228	Low Strain Alert 1 Ch 2~	R	0x2220
0x2328	Low Strain Alert 1 Ch 2~	R	0x2320

0x202C	Low Strain Alert 2 Ch 1~	R
0x212C	Low Strain Alert 2 Ch 2~	R
0x222C	Low Strain Alert 2 Ch 2~	R
0x232C	Low Strain Alert 2 Ch 2~	R

0x2020	High Strain Alert 1 Ch 1~	R
0x2120	High Strain Alert 1 Ch 2~	R
0x2220	High Strain Alert 1 Ch 2~	R
0x2320	High Strain Alert 1 Ch 2~	R

0x2024	High Strain Alert 2 Ch 1~	R
0x2124	High Strain Alert 2 Ch 2~	R
0x2224	High Strain Alert 2 Ch 2~	R
0x2324	High Strain Alert 2 Ch 2~	R

Status Registers

0x1100 BIT Loop Status Ch 1-4 R/W

0x1104 BIT Amp Status Ch 1-4 R/W

BIT Registers

0x0800	Dynamic Status	R
0x0804	Latched Status*	R/W
0x0808	Interrupt Enable	R/W
0x080C	Set Edge/Level Interrupt	R/W

Status Registers

High Strain Alert 1

0x0820	Dynamic Status	R
0x0824	Latched Status*	R/W
0x0828	Interrupt Enable	R/W
0x082C	Set Edge/Level Interrupt	R/W

High Strain Alert 2

0x0830	Dynamic Status	R
0x0834	Latched Status*	R/W
0x0838	Interrupt Enable	R/W
0x083C	Set Edge/Level Interrupt	R/W

Low Strain Alert 1

0x0840	Dynamic Status	R
0x0844	Latched Status*	R/W
0x0848	Interrupt Enable	R/W
0x084C	Set Edge/Level Interrupt	R/W

Low Strain Alert 2

0x0850	Dynamic Status	R
0x0854	Latched Status*	R/W
0x0858	Interrupt Enable	R/W
0x085C	Set Edge/Level Interrupt	R/W

Error Summary

	-	
0x09A0	Dynamic Status	R
0x09A4	Latched Status*	R/W
0x09A8	Interrupt Enable	R/W
0x09AC	Set Edge/Level Interrupt	R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500	Module 1 Interrupt Vector 1 - BIT	R/W
0x0504	Module 1 Interrupt Vector 2 - Reserved	R/W
0x0508	Module 1 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x050C	Module 1 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0510	Module 1 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0514	Module 1 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0518 to	Module 1 Interrupt Vector 7-26 - Reserved	R/W
0x0564		
0x0568	Module 1 Interrupt Vector 27 - Summary	R/W
0x056C to	Module 1 Interrupt Vector 28-32 - Reserved	R/W
0x057C		

0x0600	Module 1 Interrupt Steering 1 - BIT	R/W
0x0604	Module 1 Interrupt Steering 2 - Reserved	R/W
0x0608	Module 1 Interrupt Steering 2 - Strain Alert Low 1	R/W
0x060C	Module 1 Interrupt Steering 3 - Strain Alert Low 2	R/W
0x0610	Module 1 Interrupt Steering 4 - Strain Alert High 1	R/W
0x0614	Module 1 Interrupt Steering 5 - Strain Alert High 2	R/W
0x0618 to	Module 1 Interrupt Steering 6-26 - Reserved	R/W
0x0664		
0x0668	Module 1 Interrupt Steering 27 - Summary	R/W
0x066C to	Module 1 Interrupt Steering 28-32 - Reserved	R/W
0x067C		

0x0700	Module 2 Interrupt Vector 1 - BIT	R/W
0x0704	Module 2 Interrupt Vector 2 - Reserved	R/W
0x0708	Module 2 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x070C	Module 2 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0710	Module 2 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0714	Module 2 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0718 to	Module 2 Interrupt Vector 7-26 - Reserved	R/W
0x0764		
0x0768	Module 2 Interrupt Vector 27 - Summary	R/W
0x076C to	Module 2 Interrupt Vector 28-32 - Reserved	R/W
0x077C		

0x0800	Module 2 Interrupt Steering 1 - BIT	R/W
0x0804	Module 2 Interrupt Steering 2 - Reserved	R/W
0x0808	Module 2 Interrupt Steering 3 - Strain Alert Low 1	R/W
0x080C	Module 2 Interrupt Steering 4 - Strain Alert Low 2	R/W
0x0810	Module 2 Interrupt Steering 5 - Strain Alert High 1	R/W
0x0814	Module 2 Interrupt Steering 6 - Strain Alert High 2	R/W
0x0818 to	Module 2 Interrupt Steering 7-26 - Reserved	R/W
0x0864		
0x0868	Module 2 Interrupt Steering 27 - Summary	R/W
0x086C to	Module 2 Interrupt Steering 28-32 - Reserved	R/W
0x087C		

0x0900	Module 3 Interrupt Vector 1 - BIT	R/W
0x0904	Module 3 Interrupt Vector 2 - Reserved	R/W
0x0908	Module 3 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x090C	Module 3 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0910	Module 3 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0914	Module 3 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0918 to	Module 3 Interrupt Vector 7-26 - Reserved	R/W
0x0964		
0x0968	Module 3 Interrupt Vector 27 - Summary	R/W
0x096C to	Module 3 Interrupt Vector 28-32 - Reserved	R/W
0x097C		

0x0A00	Module 3 Interrupt Steering 1 - BIT	R/W
0x0A04	Module 3 Interrupt Steering 2 - Reserved	R/W
0x0A08	Module 3 Interrupt Steering 3 - Strain Alert Low 1	R/W
0x0A0C	Module 3 Interrupt Steering 4 - Strain Alert Low 2	R/W
0x0A10	Module 3 Interrupt Steering 5 - Strain Alert High 1	R/W
0x0A14	Module 3 Interrupt Steering 6 - Strain Alert High 2	R/W
0x0A18 to	Module 3 Interrupt Steering 7-26 - Reserved	R/W
0x0A64		
0x0A68	Module 3 Interrupt Steering 27 - Summary	R/W
0x0A6C to	Module 3 Interrupt Steering 28-32 - Reserved	R/W
0x0A7C		

0x0B00	Module 4 Interrupt Vector 1 - BIT	R/W
0x0B04	Module 4 Interrupt Vector 2 - Reserved	R/W
0x0B08	Module 4 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x0B0C	Module 4 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0B10	Module 4 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0B14	Module 4 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0B18 to	Module 4 Interrupt Vector 7-26 - Reserved	R/W
0x0B64		
0x0B68	Module 4 Interrupt Vector 27 - Summary	R/W
0x0B6C to	Module 4 Interrupt Vector 28-32 - Reserved	R/W
0x0B7C		

0x0D00	Module 5 Interrupt Vector 1 - BIT	R/W
0x0D04	Module 5 Interrupt Vector 2 - Reserved	R/W
0x0D08	Module 5 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x0D0C	Module 5 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0D10	Module 5 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0D14	Module 5 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0D18 to	Module 5 Interrupt Vector 7-26 - Reserved	R/W
0x0D64		
0x0D68	Module 5 Interrupt Vector 27 - Summary	R/W
0x0D6C to	Module 5 Interrupt Vector 28-32 - Reserved	R/W
0x0D7C		

0x0C00	Module 4 Interrupt Steering 1 - BIT	R/W
0x0C04	Module 4 Interrupt Steering 2 - Reserved	R/W
0x0C08	Module 4 Interrupt Steering 3 - Strain Alert Low 1	R/W
0x0C0C	Module 4 Interrupt Steering 4 - Strain Alert Low 2	R/W
0x0C10	Module 4 Interrupt Steering 5 - Strain Alert High 1	R/W
0x0C14	Module 4 Interrupt Steering 6 - Strain Alert High 2	R/W
0x0C18 to	Module 4 Interrupt Steering 7-26 - Reserved	R/W
0x0C64		
0x0C68	Module 4 Interrupt Steering 27 - Summary	R/W
0x0C6C to	Module 4 Interrupt Steering 28-32 - Reserved	R/W
0x0C7C		

0x0E00	Module 5 Interrupt Steering 1 - BIT	R/W
0x0E04	Module 5 Interrupt Steering 2 - Reserved	R/W
0x0E08	Module 5 Interrupt Steering 3 - Strain Alert Low 1	R/W
0x0E0C	Module 5 Interrupt Steering 4 - Strain Alert Low 2	R/W
0x0E10	Module 5 Interrupt Steering 5 - Strain Alert High 1	R/W
0x0E14	Module 5 Interrupt Steering 6 - Strain Alert High 2	R/W
0x0E18 to	Module 5 Interrupt Steering 7-26 - Reserved	R/W
0x0E64		
0x0E68	Module 5 Interrupt Steering 27 - Summary	R/W
0x0E6C to	Module 5 Interrupt Steering 28-32 - Reserved	R/W
0x0E7C		

0x0F00	Module 6 Interrupt Vector 1 - BIT	R/W
0x0F04	Module 6 Interrupt Vector 2 - Reserved	R/W
0x0F08	Module 6 Interrupt Vector 3 - Strain Alert Low 1	R/W
0x0F0C	Module 6 Interrupt Vector 4 - Strain Alert Low 2	R/W
0x0F10	Module 6 Interrupt Vector 5 - Strain Alert High 1	R/W
0x0F14	Module 6 Interrupt Vector 6 - Strain Alert High 2	R/W
0x0F18 to	Module 6 Interrupt Vector 7-26 - Reserved	R/W
0x0F64		
0x0F68	Module 6 Interrupt Vector 27 - Summary	R/W
0x0F6C to	Module 6 Interrupt Vector 28-32 - Reserved	R/W
0x0F7C		

0x1000	Module 6 Interrupt Steering 1 - BIT	R/W
0x1004	Module 6 Interrupt Steering 2 - Reserved	R/W
0x1008	Module 6 Interrupt Steering 3 - Strain Alert Low 1	R/W
0x100C	Module 6 Interrupt Steering 4 - Strain Alert Low 2	R/W
0x1010	Module 6 Interrupt Steering 5 - Strain Alert High 1	R/W
0x1014	Module 6 Interrupt Steering 6 - Strain Alert High 2	R/W
0x1018 to	Module 6 Interrupt Steering 7-26 - Reserved	R/W
0x1064		
0x1068	Module 6 Interrupt Steering 27 - Summary	R/W
0x106C to	Module 6 Interrupt Steering 28-32 - Reserved	R/W
0x107C		

APPENDIX: PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals.

Module Signal (Ref Only)	Strain Gauge (SG1)
DATIO1	BRG-H-CH1
DATIO2	BRG-L-CH1
DATIO3	DRV-H-SNS-CH1
DATIO4	DRV-L-SNS-CH1
DATIO5	DRV-H-CH1
DATIO6	DRV-L-CH1
DATIO7	BRG-H-CH2
DATIO8	BRG-L-CH2
DATIO9	DRV-H-SNS-CH2
DATIO10	DRV-L-SNS-CH2
DATIO11	DRV-H-CH2
DATIO12	DRV-L-CH2
DATIO13	BRG-H-CH3
DATIO14	BRG-L-CH3
DATIO15	DRV-H-SNS-CH3
DATIO16	DRV-L-SNS-CH3
DATIO17	DRV-H-CH3
DATIO18	DRV-L-CH3
DATIO19	BRG-H-CH4
DATIO20	BRG-L-CH4
DATIO21	DRV-H-SNS-CH4
DATIO22	DRV-L-SNS-CH4
DATIO23	DRV-H-CH4
DATIO24	DRV-L-CH4
DATIO25	BRG-L-COMP-CH1
DATIO26	
DATIO27	BRG-L-COMP-CH2
DATIO28	
DATIO29	BRG-L-COMP-CH3
DATIO30	
DATIO31	BRG-L-COMP-CH4
DATIO32	
DATIO33	
DATIO34	
DATIO35	
DATIO36	
DATIO37	
DATIO38	
DATIO39	
DATIO40	
N/A	

Status and Interrupts

MODULE MANUAL

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.

Dynamic Status: The *Dynamic Status* register indicates the <u>current</u> condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The *Dynamic Status* register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event <u>has occurred</u> and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the <u>specific</u> bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a **1** back to the applicable status register to any specific bit (channel/event) location will "clear" the bit (set the bit to **0**). When clearing the channel/event bits, it is <u>strongly recommended</u> to write back the <u>same</u> bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a "1" to other channels that are not set (example 0x0000 000F) may result in incorrectly "clearing" incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the *Interrupt Enable* register. The bits in *Interrupt Enable* register map to the same bits in the *Latched Status* register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the *Latched Status* register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the *Edge/Level* setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt <u>after</u> the Latch Register is "cleared" can be specified as "edge" triggered or "level" triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is "cleared" (see below).

- *Edge triggered*: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edge-triggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After "clearing" an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.
- Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed ("steered") to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an "open" on a line. When an "open" is detected, the system will receive an interrupt. If the "open" on the line is <u>persistent</u> and the trigger is set to "edge", upon "clearing" the interrupt, the system <u>will not</u> regenerate another interrupt. If, instead, the trigger is set to "level", upon "clearing" the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to "edge".

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the "high watermark" threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the <u>count</u> of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would "clear" the interrupt. If the trigger type is set to "edge", another interrupt will be generated only if the number of elements in FIFO goes below the "high watermark" after the "clearing" the interrupt and then fills up to reach the "high watermark" threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is "cleared", the number of elements in the FIFO is at or above the "high watermark" threshold value. Thus, upon "clearing" the interrupt, if the number of elements in the FIFO is at or above the "high watermark" threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

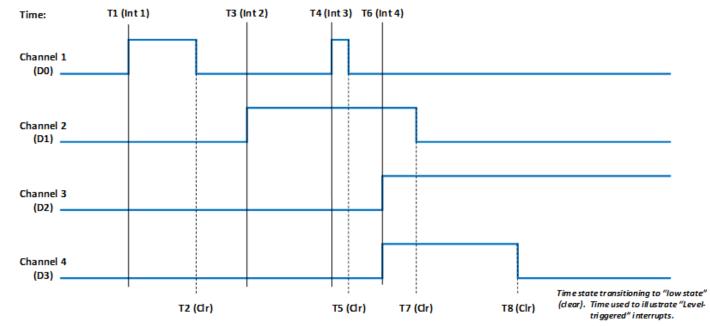


Figure 1. Example of Module's Channel-Mapped Dynamic and Latched Status States

		No Clearing of Latched Status	Clearing of Latched Si (Edge-Triggered)		Clearing of Latched Status (Level-Triggered)		
Time	Dynamic Status	Latched Status	Action	Latched Status	Action	Latched	
Т0	0x0	0x0	Read Latched Register	0x0	Read Latched Register	0x0	
T1	0x1	0x1	Read Latched Register	0x1		0x1	
			Write 0x1 to Latched Register		Write 0x1 to Latched Register		
				0x0		0x1	
T2	0x0	0x1	Read Latched Register	0x0	Read Latched Register	0x1	
					Write 0x1 to Latched Register		
						0x0	
T3	0x2	0x3	Read Latched Register	0x2	Read Latched Register	0x2	
			Write 0x2 to Latched Register		Write 0x2 to Latched Register		
				0x0		0x2	
T4	0x2	0x3	Read Latched Register	0x1	Read Latched Register	0x3	
			Write 0x1 to Latched Register		Write 0x3 to Latched Register		
				0x0		0x2	
T5	0xC	0xF	Read Latched Register	0xC	Read Latched Register	0xE	
			Write 0xC to Latched Register		Write 0xE to Latched Register		
				0x0		0xC	
Т6	0xC	0xF	Read Latched Register	0x0	Read Latched Register	0xC	
					Write 0xC to Latched Register		
	ļ					0xC	
T7	0x4	0xF	Read Latched Register	0x0	Read Latched Register	0xC	
					Write 0xC to Latched Register		
	ļ					0x4	
T8	0x4	0xF	Read Latched Register	0x0	Read Latched Register	0x4	

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

	Latched Status (Edge-Triggered – Clear Multi-Channel)		Latched Status (Edge-Triggered – Clear Single Channel)		Latched Status (Level-Triggered – Clear Multi-Channel)	
Time	Action	Latched	Action	Latched	Action	Latched
T1 (Int 1)	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1
	Write 0x1 to Latched Register		Write 0x1 to Latched Register		Write 0x1 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.	0x1
T3 (Int 2)	Interrupt Generated Read Latched Registers	0x2	Interrupt Generated Read Latched Registers	0x2	Interrupt Generated Read Latched Registers	0x2
	Write 0x2 to Latched Register		Write 0x2 to Latched Register		Write 0x2 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.	0x2
T4 (Int 3)	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x3
	Write 0x1 to Latched Register		Write 0x1 to Latched Register		Write 0x3 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.	0x3
					Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.	0x2

-	1					
	Latched Status		Latched Status		Latched Status	
	(Edge-Triggered –		(Edge-Triggered –		(Level-Triggered –	
	Clear Multi-Channel)		Clear Single Channel)		Clear Multi-Channel)	
Time	Action	Latched	Action	Latched	Action	Latched
T6 (Int 4)	Interrupt Generated Read Latched Registers	0xC	Interrupt Generated Read Latched Registers	0xC	Interrupt Generated Read Latched Registers	0xE
	Write 0xC to Latched Register		Write 0x4 to Latched Register		Write 0xE to Latched Register	
		0x0	Interrupt re-triggers Write 0x8 to Latched Register	0x8	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.	0xE
				0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.	0xC
					Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.	0x4

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients' time-to-mission with a unique approach based on a Configurable Open Systems Architecture[™] (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

FAQ http://www.naii.com/faqs

Application Notes http://www.naii.com/applicationnotes

Calibration and Repairs http://www.naii.com/calibrationrepairs

Call Us (631) 567-1100

__Accelerate Your Time-to-Mission™

© 2022 North Atlantic Industries, Inc. All rights reserved. All other brands or names are property of their respective holders.

This document has been produced for the customers of North Atlantic Industries, Inc. (NAI) with the intent and purpose of providing specific product operation information for systems integration. Unauthorized use or intent is prohibited without written permission from NAI. NAI reserves the right to revise this document to include product updates, corrections, and clarifications and may not conform in every aspect to former issues. The information provided in this document is believed to be accurate and is provided "as is" with no representations or warranties of any kind whether expressed or implied, including, but not limited to, warranties of design, merchantability or fitness for a particular purpose. North Atlantic Industries does not assume any responsibility for its use and shall not be responsible for any liability resulting from reliance upon any information contained herein. No licenses or rights are granted by implication or otherwise in connection therewith.